Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Clin. transl. oncol. (Print) ; 25(6): 1629-1640, jun. 2023. graf
Artigo em Inglês | IBECS | ID: ibc-221195

RESUMO

Purpose Breast cancer is one of the leading causes of tumor death worldwide in female, and the five-year overall survival of breast cancer patients remains poor. It is an urgent need to seek novel target for its treatment. Synaptotagmin 13 (SYT13) is a synaptic vesicle transporting protein that regulates the malignant phenotypes of various cancers. However, its role in breast cancer is still unclear. The current study aimed to investigate the effects of SYT13 on the progression of breast cancer. Methods Twenty-five pairs of breast cancer tissues and non-tumor tissues were obtained to assess the expression of SYT13. We manually modified the expression of SYT13 in MCF-7 and MDA-MB-231 cells. CCK-8 assay, EdU staining, and cell cycle analysis were carried out to measure the proliferated ability of cells. Annexin V/PI and TUNEL assays were used to detect the apoptotic ability of cells. Wound healing and transwell assays were employed to evaluate the migrated and invasive ability of breast cancer cells. Results The results revealed that the mRNA and protein levels of SYT13 were higher in breast cancer tissues and cell lines. Knockdown of SYT13 inhibited the cell proliferation and induced cell cycle arrest in G1 phase of MCF-7 cells by downregulating cyclin D1 and CDK4, as well as upregulating p21. The migration and invasion of MCF-7 cells were repressed by the loss of SYT13 via the gain of E-cadherin and the loss of vimentin. Overexpression of SYT13 in MDA-MB-231 cells led to the opposite effects. Silencing of SYT13 induced the apoptosis ability of MCF-7 cells by the upregulation of bax and the downregulation of bcl-2. Moreover, we found that SYT13 depletion suppressed the FAK/AKT signaling pathway. PF573228 (a FAK inhibitor) and MK2206 (an AKT inhibitor) reversed the SYT13 overexpression-induced promotion of proliferation, migration, and invasion of MDA-MB-231 cells (AU)


Assuntos
Humanos , Feminino , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Apoptose , Ciclo Celular , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Células MCF-7 , Transdução de Sinais , Sinaptotagminas/genética , Sinaptotagminas/metabolismo
2.
Hum Cell ; 36(4): 1501-1515, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37165255

RESUMO

E3 ubiquitin ligase Zinc and Ring Finger 2 (ZNRF2) has been demonstrated to be engaged in the development of multiple cancers. Nevertheless, the function of ZNRF2 in breast cancer (BC) still unclear. In this work, we firstly analyzed the differentially expressed genes in BC by bioinformatics and found that ZNRF2 was highly expressed in BC. Consistently, we further confirmed that ZNRF2 was upregulated in BC tissues compared with adjacent normal tissues, and this was positively correlated with the poor prognosis and the higher pathological grades of patients with BC. Functional assays performed on HCC1937 and MCF-7 cells indicated that silencing of ZNRF2 suppressed cell proliferation, as evidenced by the decrease in the expression of cyclin A, PCNA and cyclin D1. Flow cytometry and Hoechst staining showed that knockdown of ZNRF2 induced cell apoptosis, which was verified by the upregulation of apoptosis genes such as Bax, cleaved PARP and Bim. ZNRF2 knockdown also inhibited in vivo tumor growth. But, instead, ZNRF2-overexpressed BC cells exhibited obvious malignant phenotypes. Additionally, we observed that cAMP response element binding protein 1 (CREB1) directly bound to the promoter sequence of ZNRF2 and thus activating its transcription, suggesting that ZNRF2 is transcriptionally regulated by CREB1. Additionally, ZNRF2 knockdown could reverse the proliferation-promoting action of CREB1 on BC cells, Hence, this study demonstrated that ZNRF2 might serve as a prospective therapeutic target for BC.


Assuntos
MicroRNAs , Neoplasias , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Zinco , Linhagem Celular Tumoral , Oncogenes/genética , MicroRNAs/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica/genética , Apoptose/genética , Movimento Celular/genética , Neoplasias/genética
3.
Clin Transl Oncol ; 25(6): 1629-1640, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36630025

RESUMO

PURPOSE: Breast cancer is one of the leading causes of tumor death worldwide in female, and the five-year overall survival of breast cancer patients remains poor. It is an urgent need to seek novel target for its treatment. Synaptotagmin 13 (SYT13) is a synaptic vesicle transporting protein that regulates the malignant phenotypes of various cancers. However, its role in breast cancer is still unclear. The current study aimed to investigate the effects of SYT13 on the progression of breast cancer. METHODS: Twenty-five pairs of breast cancer tissues and non-tumor tissues were obtained to assess the expression of SYT13. We manually modified the expression of SYT13 in MCF-7 and MDA-MB-231 cells. CCK-8 assay, EdU staining, and cell cycle analysis were carried out to measure the proliferated ability of cells. Annexin V/PI and TUNEL assays were used to detect the apoptotic ability of cells. Wound healing and transwell assays were employed to evaluate the migrated and invasive ability of breast cancer cells. RESULTS: The results revealed that the mRNA and protein levels of SYT13 were higher in breast cancer tissues and cell lines. Knockdown of SYT13 inhibited the cell proliferation and induced cell cycle arrest in G1 phase of MCF-7 cells by downregulating cyclin D1 and CDK4, as well as upregulating p21. The migration and invasion of MCF-7 cells were repressed by the loss of SYT13 via the gain of E-cadherin and the loss of vimentin. Overexpression of SYT13 in MDA-MB-231 cells led to the opposite effects. Silencing of SYT13 induced the apoptosis ability of MCF-7 cells by the upregulation of bax and the downregulation of bcl-2. Moreover, we found that SYT13 depletion suppressed the FAK/AKT signaling pathway. PF573228 (a FAK inhibitor) and MK2206 (an AKT inhibitor) reversed the SYT13 overexpression-induced promotion of proliferation, migration, and invasion of MDA-MB-231 cells. CONCLUSION: The results indicated that SYT13 promoted the malignant phenotypes of breast cancer cells by the activation of FAK/AKT signaling pathway.


Assuntos
Neoplasias da Mama , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Sinaptotagminas , Feminino , Humanos , Apoptose , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Células MCF-7 , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sinaptotagminas/genética , Sinaptotagminas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...